THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Supplementary Exercise 2

In the following exercises, we assume the axioms of incidence and betweenness.

1. Let A, B, C and D be four points. Prove that:
(a) if $A * B * C$ and $B * C * D$, then $A * B * D$ and $A * C * D$;
(b) if $A * B * D$ and $B * C * D$, then $A * B * C$ and $A * C * D$.
2. Prove that if A, B and C are three points on a line such that $A * C * B$, then $A C \cup C B=A B$ and $A C \cap C B=\{C\} ;$
3. Let $\angle B A C$ be an angle and let D be a point lying in the interior of $\angle B A C$. Show that the every point of the ray $r_{A D}$ except the point A lies in the interior of $\angle B A C$.
4. Show that the vertex of a ray is uniquely determined by the ray, i.e. there is one and only one vertex of a ray.
5. Let A be a point. Prove that there exist infinitely many lines such that each of them passes through the point A.

Lecturer's comment:

1. Recall the line separation property with another formulation:

If B is a point and l is a line passing through the point B, then we can define a equivalence relation on the points of $l \backslash\{B\}$ such that $A \sim C$ if and only if the line segment $A C$ does not contain B, i.e. $A * B * C$ is not true.

Furthermore, there are only two equivalence classes, hence we say A and C are said to be on the same side of B if $A \sim C$, otherwise they are said to be on opposite side of B.
(a) Considering the above equivalence relation with a fixed point B. By the assumption that $A * B * C$, we know that $A \nsim C$. Furthermore, by axiom B3, $B * C * D$ implies that $C * B * D$ is not true, i.e. $C \sim D$. Therefore, $A \nsim D$ and so $A * B * D$.
Note that $A * B * C$ and $B * C * D$ imply $D * C * B$ and $C * B * A$ by axiom B1. By the above argument, we have $D * C * A$, as well as $A * C * D$ by axiom B1 again.
(b) Considering the above equivalence relation with a fixed point B. By the assumption that $A * B * D$, we know that $A \nsim D$. Furthermore, by axiom B3, $B * C * D$ implies that $C * B * D$ is not true, i.e. $C \sim D$. Therefore, $A \nsim C$ and so $A * B * C$.
Then, by the above and (a), $A * B * C$ and $B * C * D$ implies $A * C * D$.
2. (i) Let $D \in A C \cup C B$, then D lies on $A C$ or $C B$ (but probably both).

Assume $D \in A C=\{X: A * X * C\} \cup\{A, C\}$. If $D=A, D=A \in A B$. If $D=C$, by the assumption $A * C * B, D=C \in A B$. If $A * D * C$, by the assumption $A * C * B$ and question 1 (b), we have $A * D * B$ and so $D \in A B$. Therefore, $D \in A B$ for all cases.

Similarly, if $D \in C B$, then we have $D \in A B$.
Hence, $A C \cup C B \subset A B$.
(ii) Let $D \in A B=\{X: A * X * B\} \cup\{A, B\}$. If $D=A$ or $D=B$, it is clear that $D \in A C \cup C B$.

Now, assume that $A * D * B$. We consider the three points A, D and C. By axiom B3, exactly one of the following is true: $A * D * C, A * C * D$ and $D * A * C$.
However, if $D * A * C$, by the assumption $A * C * B$ and question 1(a), we have $D * A * B$ which contradicts to the assumption that $A * D * B$ (by axiom B3). Therefore, we only need to consider the first two cases.
For the case $A * D * C$, it means that $D \in A C$ and so $D \in A C \cup C B$.
For the case $A * C * D$, by the assumption $A * D * B$ and question 1 (b), we have $C * D * B$ which means $D \in C B$ and so $D \in A C \cup C B$.
Combining the above cases, we have $A B \subset A C \cup C B$.
Now, $A C \cup C B \subset A B$ and $A B \subset A C \cup C B$. Therefore, $A C \cup C B=A B$.
3. Recall the definition that the interior of $\angle B A C$ consists of all points E such that E and C are on the same side of the line $l_{A B}$, and E and B are on the same side of the line $l_{A C}$.

Therefore, what we have to show is that if $E \in r_{A D}$ and $E \neq A, D$, then E satisfies the above conditions.

By the line separation property and the definition of a ray, for any point $E \in r_{A D}$ and $E \neq A, D$, the line segment $E D$ does not contain the point A. Note that if $E D$ contains a point $X \in l_{A B}$, then $X \neq A$. Also, $A, X \in l_{E D} \cap l_{A B}$ which contradicts to axiom I1. Therefore, $E D$ does not contain any point of the line $l_{A B}$ and E and D are on the same side of the line $l_{A B}$. Furthermore, D and C are the same side of the line $l_{A B}$, so E and C are on the same side of the line $l_{A B}$. By similar argument, we can show that E and B are on the same side of the line $l_{A C}$ and the result follows.
4. Let A and B be vertices of a ray r. We claim that we must have $A=B$.

Suppose the contrary, let $A \neq B$. Consider A as a vertex of r, then $B \in r \backslash\{A\}$. By axiom B2, we can choose a point C on $r \backslash\{A\}$ such that $A * B * C$. Also B is also a vertex of r and A, C are points on r, then A and C should be on the same side of B. However, note that C is a point on the ray r, but C and A are on opposite side of B, which is a contradiction. Therefore, $A=B$.
5. Firstly, there exists a line l which does not contain A (why?). By axiom I2, there are two distinct points B_{1} and B_{2} on l.

By axiom B2, there exists B_{3} on l such that $B_{1} * B_{2} * B_{3}$. By using axiom B3 repeatly, we show that there is an infinite sequence of points B_{n} so that $B_{n} * B_{n+1} * B_{n+2}$ for all natural numbers n. Then, we have an infinite sequence of lines $l_{A B_{n}}$ which passes through A.
(Think: Why $l_{A B_{i}} \neq l_{A B_{j}}$ for $i \neq j$?)

