THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Supplementary Exercise 2

In the following exercises, we assume the axioms of incidence and betweenness.

- 1. Let A, B, C and D be four points. Prove that:
 - (a) if A * B * C and B * C * D, then A * B * D and A * C * D;
 - (b) if A * B * D and B * C * D, then A * B * C and A * C * D.
- 2. Prove that if A, B and C are three points on a line such that A * C * B, then $AC \cup CB = AB$ and $AC \cap CB = \{C\}$;
- 3. Let $\angle BAC$ be an angle and let D be a point lying in the interior of $\angle BAC$. Show that the every point of the ray r_{AD} except the point A lies in the interior of $\angle BAC$.
- 4. Show that the vertex of a ray is uniquely determined by the ray, i.e. there is one and only one vertex of a ray.
- 5. Let A be a point. Prove that there exist infinitely many lines such that each of them passes through the point A.

Lecturer's comment:

1. Recall the line separation property with another formulation:

If B is a point and l is a line passing through the point B, then we can define a equivalence relation on the points of $l \setminus \{B\}$ such that $A \sim C$ if and only if the line segment AC does not contain B, i.e. A * B * C is not true.

Furthermore, there are only two equivalence classes, hence we say A and C are said to be on the same side of B if $A \sim C$, otherwise they are said to be on opposite side of B.

(a) Considering the above equivalence relation with a fixed point *B*. By the assumption that A * B * C, we know that $A \nsim C$. Furthermore, by axiom **B3**, B * C * D implies that C * B * D is not true, i.e. $C \sim D$. Therefore, $A \nsim D$ and so A * B * D.

Note that A * B * C and B * C * D imply D * C * B and C * B * A by axiom **B1**. By the above argument, we have D * C * A, as well as A * C * D by axiom **B1** again.

- (b) Considering the above equivalence relation with a fixed point B. By the assumption that A * B * D, we know that A ≈ D. Furthermore, by axiom B3, B * C * D implies that C * B * D is not true, i.e. C ~ D. Therefore, A ≈ C and so A * B * C.
 Then, by the above and (a), A * B * C and B * C * D implies A * C * D.
- 2. (i) Let D ∈ AC ∪ CB, then D lies on AC or CB (but probably both).
 Assume D ∈ AC = {X : A * X * C} ∪ {A, C}. If D = A, D = A ∈ AB. If D = C, by the assumption A * C * B, D = C ∈ AB. If A * D * C, by the assumption A * C * B and question 1(b), we have A * D * B and so D ∈ AB. Therefore, D ∈ AB for all cases.

Similarly, if $D \in CB$, then we have $D \in AB$. Hence, $AC \cup CB \subset AB$.

(ii) Let D ∈ AB = {X : A * X * B} ∪ {A, B}. If D = A or D = B, it is clear that D ∈ AC ∪ CB. Now, assume that A * D * B. We consider the three points A, D and C. By axiom B3, exactly one of the following is true: A * D * C, A * C * D and D * A * C. However, if D * A * C, by the assumption A * C * B and question 1(a), we have D * A * B which contradicts to the assumption that A * D * B (by axiom B3). Therefore, we only need to consider the first two cases.

For the case A * D * C, it means that $D \in AC$ and so $D \in AC \cup CB$.

For the case A * C * D, by the assumption A * D * B and question 1(b), we have C * D * Bwhich means $D \in CB$ and so $D \in AC \cup CB$.

Combining the above cases, we have $AB \subset AC \cup CB$.

Now, $AC \cup CB \subset AB$ and $AB \subset AC \cup CB$. Therefore, $AC \cup CB = AB$.

3. Recall the definition that the interior of $\angle BAC$ consists of all points E such that E and C are on the same side of the line l_{AB} , and E and B are on the same side of the line l_{AC} .

Therefore, what we have to show is that if $E \in r_{AD}$ and $E \neq A, D$, then E satisfies the above conditions.

By the line separation property and the definition of a ray, for any point $E \in r_{AD}$ and $E \neq A, D$, the line segment ED does not contain the point A. Note that if ED contains a point $X \in l_{AB}$, then $X \neq A$. Also, $A, X \in l_{ED} \cap l_{AB}$ which contradicts to axiom **I1**. Therefore, ED does not contain any point of the line l_{AB} and E and D are on the same side of the line l_{AB} . Furthermore, D and C are the same side of the line l_{AB} , so E and C are on the same side of the line l_{AB} . By similar argument, we can show that E and B are on the same side of the line l_{AC} and the result follows.

4. Let A and B be vertices of a ray r. We claim that we must have A = B.

Suppose the contrary, let $A \neq B$. Consider A as a vertex of r, then $B \in r \setminus \{A\}$. By axiom **B2**, we can choose a point C on $r \setminus \{A\}$ such that A * B * C. Also B is also a vertex of r and A, C are points on r, then A and C should be on the same side of B. However, note that C is a point on the ray r, but C and A are on opposite side of B, which is a contradiction. Therefore, A = B.

5. Firstly, there exists a line l which does not contain A (why?). By axiom **I2**, there are two distinct points B_1 and B_2 on l.

By axiom **B2**, there exists B_3 on l such that $B_1 * B_2 * B_3$. By using axiom **B3** repeatly, we show that there is an infinite sequence of points B_n so that $B_n * B_{n+1} * B_{n+2}$ for all natural numbers n. Then, we have an infinite sequence of lines l_{AB_n} which passes through A.

(Think: Why $l_{AB_i} \neq l_{AB_j}$ for $i \neq j$?)